Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2309657, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654462

RESUMEN

Alleviating the decomposition of the electrolyte is of great significance to improving the cycle stability of cathodes, especially for LiCoO2 (LCO), its volumetric energy density can be effectively promoted by increasing the charge cutoff voltage to 4.6 V, thereby supporting the large-scale application of clean energy. However, the rapid decomposition of the electrolyte under 4.6 V conditions not only loses the transport carrier for lithium ion, but also produces HF and insulators that destroy the interface of LCO and increase impedance. In this work, the decomposition of electrolyte is effectively suppressed by changing the adsorption force between LCO interface and EC. Density functional theory illustrates the LCO coated with lower electronegativity elements has a weaker adsorption force with the electrolyte, the adsorption energy between LCO@Mg and EC (0.49 eV) is weaker than that of LCO@Ti (0.73 eV). Meanwhile, based on the results of time of flight secondary ion mass spectrometry, conductivity-atomic force microscopy, in situ differential electrochemical mass spectrometry, soft X-ray absorption spectroscopy, and nuclear magnetic resonance, as the adsorption force increases, the electrolyte decomposes more seriously. This work provides a new perspective on the interaction between electrolyte and the interface of cathode and further improves the understanding of electrolyte decomposition.

2.
RSC Adv ; 14(17): 11862-11871, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38623293

RESUMEN

Since Na3V2(PO4)3 (NVP) possesses modest volume deformation and three-dimensional ion diffusion channels, it is a potential sodium-ion battery cathode material that has been extensively researched. Nonetheless, NVP still endures the consequences of poor electronic conductivity and low voltage platforms, which need to be further improved. On this basis, a high voltage platform Na3V2(PO4)2F3 was introduced to form a composite with NVP to increase the energy density. In this study, the sol-gel technique was successfully used to synthesize a Na3V2(PO4)2.75F0.75/C (NVPF·3NVP/C) composite cathode material. The citric acid-derived carbon layer was utilized to construct three-dimensional conducting networks to effectively promote ion and electron diffusion. Furthermore, the composites' synergistic effect accelerates the quick ionic migration and improves the kinetic reaction. In particular, NVP as the dominant phase enhanced the structural stability and significantly increased the capacitive contribution. Therefore, at 0.1C, the discharge capacity of the modified NVPF·3NVP/C composite is 120.7 mA h g-1, which is greater than the theoretical discharge capacity of pure NVP (118 mA h g-1). It discharged 110.9 mA h g-1 of reversible capacity even at an elevated multiplicity of 10C, and after 200 cycles, it retained 64.1% of its capacity. Thus, the effort produced an optimized NVPF·3NVP/C composite cathode material that may be used in the sodium ion cathode.

3.
ACS Appl Mater Interfaces ; 16(5): 6143-6151, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270105

RESUMEN

V5S8 has received extensive attention in the field of sodium-ion batteries (SIBs) due to its two-dimensional (2D) layered structure, and weak van der Waals forces between V-S accelerate the transport of sodium ions. However, the long-term cycling of V5S8 still suffers from volume expansion and low conductivity. Herein, a hollow nanotube V5S8@C (H-V5S8@C) with improved conductivity was synthesized by a solvothermal method to alleviate cracking caused by volume expansion. Benefiting from the large specific surface area of the hollow nanotube structure and uniform carbon coating, H-V5S8@C exhibits a more active site and enhanced conductivity. Meanwhile, the heterojunction formed by a few residual MoS2 and the outer layer of V5S8 stabilizes the structure and reduces the ion migration barrier with fast Na+ transport. Specifically, the H-V5S8@C anode provides an enhanced rate performance of 270.1 mAh g-1 at 15 A g-1 and high cycling stability of 291.7 mAh g-1 with a retention rate of 90.98% after 300 cycles at 5 A g-1. This work provides a feasible approach for the structural design of 2D layered materials, which can promote the practical application of fast-charging sodium-ion batteries.

4.
ACS Appl Mater Interfaces ; 15(18): 21982-21993, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098946

RESUMEN

Due to high volumetric energy density, the major market share of cathode materials for lithium-ion batteries is still dominated by LiCoO2 (LCO) at a 3C field. However, a number of challenges will be triggered if the charge voltage is increased from 4.2/4.3 to 4.6 V to further increase energy density, such as a violent interface reaction, Co dissolution, and release of lattice oxygen. Here, LCO is coated with the fast ionic conductor Li1.8Sc0.8Ti1.2(PO4)3 (LSTP) to form LCO@LSTP, while a stable interface of LCO is in situ constructed by the decomposition of LSTP at the LSTP/LCO interface. As decomposition products of LSTP, Ti and Sc elements can be doped into LCO and thus reconstruct the interface from a layered structure to a spinel structure, which improves the stability of the interface. Moreover, Li3PO4 from the decomposition of LSTP and remaining LSTP coating as a fast ionic conductor can improve Li+ transport when compared with bare LCO, and thus boost the specific capacity to 185.3 mAh g-1 at 1C. Benefited from the stable interface and fast ion conducting coating, the LCO@LSTP (1 wt %) cathode delivers a high capacity of 202.3 mAh g-1 at the first cycle (0.5C, 3.0-4.6 V), and shows a higher capacity retention of 89.0% than LCO (50.9%) after 100 cycles. Furthermore, the change of the Fermi level obtained by using a kelvin probe force microscope (KPFM) and the oxygen band structure calculated by using density functional theory further illustrate that LSTP supports the performance of LCO. We anticipate that this study can improve the conversion efficiency of energy-storage devices.

5.
Small Methods ; 7(2): e2201387, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36604985

RESUMEN

Sodium-ion batteries (SIBs) have inspired the potential for widespread use in energy storage owing to the advantages of abundant resources and low cost. Benefiting from the layered structure, 2D-layered materials enable fast interlayer transport of sodium ions and thus are considered promising candidates as anodes for SIBs. Herein, a strategy of adjusting crystal orientation is proposed via a solvothermal method to improve sodium-ion transport at the edge of the interlayers in 2D-layered materials. By introducing surfactants and templates, the 2D-layered V5 S8 nanosheets are controlled to align the interlayer diffusion channels vertically to the surface, which promotes the fast transport of Na+ at the edge of the interlayers as revealed by experimental methods and ab initio calculations. Benefiting from the aligned crystal orientation and rGO coating, the vertical-V5 S8 @rGO hybrid delivers a high initial discharge capacity of 350.6 mAh g-1 at a high current density of 15 A g-1 . This work provides a strategy for the structural design of 2D-layered anode materials by adjusting crystal orientation, which demonstrates the promise for applications in fast-charging alkaline-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...